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Abstract

Obesity is major risk factor for many disorders, including diabetes, hypertension and heart disease. Unfortunately, there is a dearth of

therapeutic agents available to clinicians for the treatment of obesity. The principal aim of this study was to investigate whether PEGylated

all-trans retinoic acid (PRA) can have favorable stability and biological activity in 3T3-L1 preadipocytes as an antiobesity drug. Here, we

found that PRA inhibits the process of adipogenesis, including survival of adipocytes and differentiation to mature adipocytes. The results

showed that RA nanoparticles (NPs) were prepared by PEGylation; below 200 nm, PRA-NPs were obtained. Moreover, PRA decreased

glycerol-3-phosphate dehydrogenase activity in 3T3-L1 preadipocytes by acting with major adipocyte marker proteins such as PPARg2, C/

EBPa and aP2 modulators. Apoptosis, in addition, increased as the level of RA increased from 10 to 20 AM, whereas PRA reduced apoptosis

with increasing concentrations. Our data suggest that PRA-NP has potential as an antiobesity drug carrier due to its small particle size and

PEGylated core–shell structure. In addition, our results suggest that PRA inhibits the process of adipogenesis and may be developed to treat

obesity. Based on these results, PRA is suitable for adipocyte studies, and an enhanced effect of PRAwith adipocyte differentiation offers a

challenging approach for pharmaceutical applications.

D 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Advances in adipose tissue biology over the past 10 years

have led to an improved understanding of the mechanisms

linking obesity with metabolic syndrome and other compli-

cations. Adipocytes play a central role in maintaining lipid

homeostasis and energy balance in vertebrates by storing

triacylglycerides (TGs) or by releasing free fatty acids in

response to changes in energy demands [1,2]. However,

obesity is associated with a number of pathological

disorders such as non-insulin (INS)-dependent diabetes,
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hypertension, hyperlipidemia and cardiovascular diseases

[3]. Several lines of evidence have suggested that TG

accumulation in skeletal muscles and pancreatic islets is

causally related to skeletal muscle INS resistance and

pancreatic h-cell dysfunction in obese patients [4–6].

Obesity, in addition, is caused not only by adipose tissue

hypertrophy but also by adipose tissue hyperplasia, which

triggers the transformation of preadipocytes into adipocytes

[7]. However, the molecular basis for these associations

remains to be elucidated, thus rendering the search for

antiobesity agents inherently difficult.

Retinoic acid regulates cellular functions by binding to

intracellular retinoic acid receptors (RARs) or retinoid X

receptors (RXRs). These two retinoid receptor families act

via the formation of either an RAR–RXR heterodimer or an

RXR–RXR homodimer, both of which regulate the expres-

sion of retinoic acid target genes [8]. Specifically, clinical

trials have shown that all-trans retinoic acid (RA), the most

active form of vitamin A metabolites, is effective against
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several human malignancies [9], as well as for the treatment

of epithelial and hematologic malignancies such as breast

[10], lung [11] and neck cancers [12]. Moreover, RA plays

essential roles in the regulation of the adipogenesis of

preadipocyte cell lines [13] and human osteoblasts [14,15].

However, in spite of these pronounced effects, vitamin A

deficiency causes cessation of growth and night blindness,

and renders organisms more susceptible to infection [16,17].

Furthermore, a high concentration of vitamin A intake

results in hypervitaminosis and nausea, with severe detri-

mental effects [18]. In addition, the high concentration of

RA induces apoptosis in adipocytes [19]. For these reasons,

adipocyte differentiation studies with RA are difficult, and

clinical applications of RA are also limited.
Fig. 1. The reaction s
Polymers play increasingly important roles in drug

formulation and drug delivery. In particular, poly(ethylene

glycol) (PEG) has found a wide application in the

preparation of statically stabilized liposomes, which show

reduced uptake by macrophages, increase solubility in water

and reduce secondary aggregation [20–22]. In fact, the

Food and Drug Administration has approved the use of PEG

for human intravenous, oral and dermal applications [23].

PEG is a unique polyether diol, which is generally

manufactured through the aqueous anionic polymerization

of ethylene oxide, although other polymerization initiators

can also be employed [24]. Moreover, PEG is amphiphilic

and is dissolved in organic solvents as well as in water. It is

also nontoxic and can be eliminated through a combination
cheme of PRA.
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of renal and hepatic pathways, thus making it ideal for

pharmaceutical applications [25].

The objective of our study was to make use of PEGy-

lated all-trans retinoic acid (PRA), which has the

potential for decreasing cytotoxicity and for attenuating

lipid accumulation in 3T3-L1 preadipocytes for clinical

applications. Attempt was also made to better understand

the molecular mechanisms by which PRA affects the

expression of transcription factors, differentiation and lipoly-

sis in adipocytes.
Fig. 2. Stability test of RA and PRA. At specific time intervals, changes in

absorbance were determined through UV absorbance spectroscopy at

350 nm. The concentration of intact RA in the methanol solution rapidly

decreased compared to that of PRA during incubation at room temperature

under light exposure. Each experiment was performed in triplicate. Values

are expressed as meanFS.D.
2. Materials and methods

2.1. Materials

RA, Oil Red-O (ORO), isopropyl alcohol, h-nicotinamide

adenine dinucleotide (NADH), dihydroxyacetone phosphate

(DHAP), INS, dexamethasone (Dex), 3-isobutyl-1-methyl-

xanthine (IBMX) and Dulbecco’s modified Eagle’s medium

(DMEM) were obtained from Sigma (St. Louis, USA).

1,3-Dicyclohexylcarbodiimide (DCC) and N-hydroxysucci-

nimide (NHS) were obtained from Aldrich (Milwaukee,

USA). Fetal bovine serum (FBS) and amine-terminated

poly(ethylene glycol) (APEG) were purchased from Gibco

Life Technologies (New York, USA) and Sunbio (Seoul,

Korea), respectively.

2.2. Cell culture and differentiation induction

3T3-L1 preadipocytes were obtained from the American

Type Culture Collection. Cells were seeded in 6-, 12- and

24-well tissue culture plates and grown to confluence in

DMEM with 100 U/ml penicillin, 100 Ag/ml streptomycin,

1 mM sodium pyruvate and 10% FBS. For standard

adipocyte differentiation, 3 days after the cells had reached

confluency (hereafter referred to as Day 0), the cells were

exposed to the differentiation medium containing 10% FBS,

10 Ag/ml INS, 1 AM Dex and 0.5 AM IBMX for 3 days and

maintained in a postinduction medium containing 10% FBS

and 10 Ag/ml INS. Cells were grown at 378C in 5% CO2

incubator, and fresh medium was changed every 3 days.

2.3. Preparation of PRA

RA (108 mg, 3.6�10�4 mol) dissolved in 10 ml of

DMSO was activated with NHS (83 mg, 7.2�10�4 mol) and

DCC (371 mg, 1.8�10�3 mol) and subsequently reacted

with APEG (MW=5000) (600 mg, 1.2�10�3 mol) at room

temperature for 36 h. The resulting solution was then

dialyzed at 48C in a dark room and freeze-dried. The

reaction scheme of PRA is shown in Fig. 1. The degree of

PRA was estimated by 1H NMR (Avance 500; Bruker).

2.4. Transmission electron microscopy (TEM) observation

The morphology of core–shell type PRA nanoparticles

(NPs) was observed using TEM (JEM 1010; JEOL, Japan).

A drop of the suspension of PRA-NP in distilled water was

placed on a copper grid and stained with 2% uranyl acetate
solution for 20 s. The grid was allowed to dry further for

15 min prior to examination with an electron microscope.

2.5. Size distribution measurement

PRA size in aqueous solution was measured by dynamic

light scattering (DLS) at a 908C angle to the incident beam.

2.6. Stability test of PRA in light

RA and PRA were dissolved in methanol (0.01 wt.%).

Samples were placed at room temperature under a 60-W

light source at a 50-cm distance from the samples. At

specific time intervals, changes in absorbance were deter-

mined through UV absorbance spectroscopy at 350 nm

(2120UV; OPTIZEN, Seoul, Korea).

2.7. Flow cytometric analysis of cell cycle and apoptosis

3T3-L1 preadipocytes in the presence or absence of RA

and PRA were collected by centrifugation and fixed with

70% ethanol at 48C overnight. Seventy percent ethanol was

then removed by centrifugation, and the DNA of the cells

were stained with a propidium iodide (PI) (Sigma) staining

solution [100 Ag/ml PI, 0.1% Triton-X and 1 mM EDTA in

phosphate-buffered saline (PBS)] in the presence of an equal

volume of DNase-free RNase (200 Ag/ml) (Intron Biotech.,

Seoul, South Korea) for 90 min and analyzed by fluores-

cence-activated cell sorter (FACS) analysis.

2.8. Single-color indirect DNA staining

To fix 3T3-L1 cells, 1 ml of 3.7% formaldehyde in PBS

(pH 7.4) was added into plates for 20 min and washed thrice

with PBS. DAPI in 1 ml of sterile dH2O was then inserted

into the plate well for 90 min and visualized.
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2.9. Glycerol-3-phosphate dehydrogenase (GPDH) activity

GPDH assay was performed using a spectrophotometric

method to detect the disappearance of NADH during the

GPDH-catalyzed reduction of DHAP under zero-order

condition, as modified by Wise and Green [26]. Proteins

were measured according to the Bradford method [27].

2.10. Cell viability assay

Cell viability was measured using the MTT proliferation

kit (Sigma), as described by the supplier.

2.11. Lipid staining

Cells were stained with ORO, as described by Suryawan

and Hu [28]. Briefly, dishes were washed thrice with PBS

and fixed with 10% formalin for 1 h at room temperature.

After fixation, the cells were washed once with PBS and

stained with a filtered ORO stock solution (0.5 g of ORO in
Fig. 3. Apoptosis analysis of RA and PRA in preinduction (Days �3 to 0) 3T3-L1
plates at a density of 3�105 cells/well containing DMEM and 10% FBS, and trea

analyzed by FACS. The sub-G1 region represents cells undergoing apoptosis-assoc

in preinduction 3T3-L1 preadipocytes, whereas PRA reduced apoptosis with incr
100 ml of isopropyl alcohol) for 30 min at room

temperature. Subsequently, the cells were washed twice

with water for 15 min and visualized.

2.12. Triglyceride (TG) content

TG content was measured with a colorimetric assay that

quantifies the glycerol content of the samples (GPO-Trinder;

Sigma). This assay involves the enzymatic hydrolysis of TG

by lipase into free fatty acids and glycerol. The glycerol

moiety, through a series of oxidation–reduction reactions,

then associates with 3,5-dichloro-2-hydroxybenzene sulfo-

nate and 4-aminoantipyrine to produce a red dye. The

absorbance of this dye is proportional to the concentration of

TG present in each sample. Following these reactions, an

aliquot of each sample was transferred into 96-well plates,

and absorbance was quantified on a microtiter plate reader

at 520 nm.
cells. 3T3-L1 preadipocytes were seeded in 24-well polystyrene surface (PS)

ted with 0–20 AM RA and PRA for 72 h. 3T3-L1 cells were harvested and

iated DNA degradation. Apoptosis was induced by 10–20 AM RA treatment

easing concentrations.



Fig. 4. Effect of 0–10 AM RA and PRA on the morphology of cultured postinduction (Days 0–15) 3T3-L1 cells. Differentiation of 3T3-L1 cells was induced

following standard protocols. Cells were fixed and stained with ORO to visualize lipid content on Day 15 of differentiation. 3T3-L1 cells placed on cocktails,

such as INS, Dex and IBMX, undergo full maturation into adipocytes, whereas adipocyte treatments of 1–10 AM RA and PRA blocked the accumulation of

lipid droplets in the cytoplasm. (A) Postinduction 3T3-L1 preadipocytes were treated with cocktail for 15 days in the presence of 0–10 AM RA. (B)

Postinduction 3T3-L1 preadipocytes were treated with cocktail for 15 days in the presence of 0–10 AM PRA.
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2.13. 5-Bromo-2V-deoxyuridine (BrdU) incorporation

After the indicated period of RA and PRA treatment, the

cells were rinsed twice with PBS, and incorporation of BrdU

was assayed after 2 h of incubation, according to the manu-

facturer’s instruction (Boehringer Mannheim, Germany).

2.14. Whole cell extracts

Plates were washed twice in PBS, and the cells were

lysed on the plates by adding a sodium dodecyl sulfate

(SDS) sample buffer containing 2.5% SDS, 10% glycerol,

50 mM Tris–HCl (pH 6.8), 10 mM dithioerythritol, 10 mM

h-glycerophosphate, 10 mM NaF, 1 mM sodium ortho-

vanadate, 1 mM phenylmethylsulfonyl fluoride and the

complete protease inhibitor mixture (1/50 tablet/ml)

(Boehringer Mannheim). Cell lysis was immediately fol-

lowed by 10 min of boiling, and lysates were subsequently

treated with benzon nuclease (Boehringer Mannheim).

Whole cell extracts were stored at �808C. Protein concen-

trations were determined by the Bradford method.

2.15. Western blot analysis

Fifty micrograms of proteins was loaded onto each lane.

After SDS polyacrylamide gel electrophoresis, proteins were

blotted onto nitrocellulose membranes (Amersham Pharma-

cia Biotech., England, UK), which were then blocked

overnight in TBS containing 5% nonfat dry milk and 0.1%

Tween 20 (Biosesang, Seoul, South Korea). Incubation with

primary and secondary antibodies was performed for 2 h in

TBS containing 5% nonfat dry milk. After incubation with

antibodies, the membranes were washed in TBS containing

0.1% Tween 20. The primary antibodies used were goat
polyclonal adipocyte lipid-binding protein (aP2) and mouse

monoclonal PPARg, recognizing both PPARg isoforms and

mouse monoclonal antibodies against mouse C/EBPa.

Secondary antibodies consisted of horseradish-peroxidase-

conjugated antimouse and antigoat antibodies (Santa Cruz

Biotech., USA). Enhanced chemiluminescence (Intron Bio-

tech.) was used for detection.

2.16. Statistical analysis

Statistical analysis was performed using Student’s t test.

Data were expressed as meanFS.D. Statistical significance

was represented by *P b.05 and **Pb.01.
3. Results

3.1. Synthesis and characterization of PRA

Fig. 1 depicts the structures of RA, PEG and synthesized

PRA. Confirmation of the synthesized PRA was performed

using 1H NMR (data not shown). The composition of RA in

PRA, as estimated by 1H NMR, was 60 mol%. It is expected

that PRA, composed of PEG as the hydrophilic part and RA

as the hydrophobic part, will self-assemble to polymeric

NPs. As a matter of fact, the morphology of prepared PRA-

NPs observed by TEM showed a spherical shape (data not

shown). In addition, the size and size distribution of PRA-

NPs by DLS measurement indicated that the sizes of PRA-

NPs were around 200 nm, with narrow size distribution

(data not shown). It has been already reported that

polymeric NPs have several advantages over conventional

drug carriers, including small particle size, ease of admin-

istration, drug targeting to specific body sites, increased



Fig. 5. Effect of 0–10 AM RA and PRA on the GPDH activity (A) and

Western blot analysis (B) of postinduction (Days 0–15) 3T3-L1 cells.

Adipogenesis was induced by treatment with the cocktail of 3T3-L1

preadipocytes. Subsequently, the cells were treated with RA and PRA at

indicated concentrations for 15 days. (A) Postinduction 3T3-L1 preadipo-

cytes were treated with cocktail for 15 days in the presence of 0–10 AMRA

and PRA. Values are expressed as meanFS.D. *P b.05. **P b.01. (B) RA

and PRA promoted the dedifferentiation of 3T3-L1 preadipocytes. Western

bolt analysis showed that treatment with 1–10 AM RA and PRA inhibited

the expression of major adipocyte marker proteins, which normally increase

during adipocyte differentiation (nontreated cells included for comparison).

Each experiment was performed in triplicate.
ig. 6. Effect of 0–10 AM RA and PRA on the cell viability of cultured

ostinduction (Days 0–15) 3T3-L1 cells. Adipogenesis was induced by

eatment with the cocktail of 3T3-L1 preadipocytes. Subsequently, the cells

ere treated with RA and PRA at indicated concentrations for 15 days.

ostinduction 3T3-L1 preadipocytes were treated with cocktail for 15 days

the presence of 0–10 AM RA and PRA, respectively. Cell number was

ecreased by 10 AM RA treatment, whereas PRA did not affect cell

iability with increasing concentrations in postinduction cells. Values are

expressed as meanFS.D. *P b.05.
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circulation time in the blood and solubilization of hydro-

phobic drugs [29–31]. Our data, together with these results,

suggest that PRA-NPs have potential as an antiobesity drug

due to their small particle size. Fig. 2 shows the stabilities of

RA and PRA exposed to light. The concentration of intact

RA in a methanol solution rapidly decreased during
incubation at room temperature under light exposure.

Within 8 h, less than 50% of intact RA remained in the

solution, whereas the rate of PRA degradation was very

slow; after 48 h of incubation, more than 90% of PRA was

found intact — an indication of the increased stability of RA

under light exposure by PEGylation.

3.2. Apoptosis and cell cycle analysis of PRA in

preinduction 3T3-L1 cells

Mouse 3T3-L1 cells were treated with 0–20 AM RA and

PRA at preinduction stage (Days �3 to 0), and cell cycle

and apoptosis were determined by FACS analysis. Com-

pared to RA treatment, an increased inhibition of apoptosis

was observed with treatment with PRA at N10 AM (Fig. 3),

although, up to 5 AM, the apoptosis rates of RA and PRA

were similar. To confirm the results of FACS, BrdU

incorporation analyses of 3T3-L1 preadipocytes between

RA and PRA, by concentrations, were compared (data not

shown). In DNA synthesis assay, cells were treated with RA

and PRA for 3 days before incubation with BrdU. Although

results were not significantly different up to 5 AM between

RA and PRA treatments, similar to the results of FACS

analysis, treatment with 10–20 AM PRA decreased apopto-

sis and increased DNA synthesis in 3T3-L1 preadipocytes,

compared to RA treatment. On the other hand, PEG alone

had no effect on apoptosis and DNA synthesis.

3.3. Reduction of differentiation and PPARg2-induced

adipogenesis in cultured 3T3-L1 preadipocytes by PRA

Long-term (15 days) treatment of 3T3-L1 preadipocytes

with 1–10 AM RA and PRA was visualized by ORO
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staining and was quantified as intracellular TG content.

After 15 days of culture in the differentiation medium with

cocktails, a high percentage of 3T3-L1 preadipocytes

acquired the typical morphology of differentiated fat cells.

At this time, lipid droplet was clearly detected by ORO

staining of differentiated 3T3-L1 preadipocytes (Fig. 4A

and B; control), which contained high levels of TG content

(data not shown). By contrast, treatment with RA and PRA

resulted in a marked reduction in lipid accumulation. GPDH

activity was also completely down-regulated by RA and

PRA treatments (Fig. 5A). We also checked whether

treatment with RA and PRA for long time periods had an

effect on PPARg2 and C/EBPa expression in mature

adipocytes (Fig. 5B). The results showed that PPARg2

expression was significantly down-regulated after RA and

PRA treatment during the entire differentiation period,

compared to control cells, although the inhibition of
Fig. 7. Effect of 0–10 AM RA and PRA on DAPI staining of cultured postinducti

the cocktail of 3T3-L1 preadipocytes. Subsequently, the cells were treated with R

preadipocytes were treated with cocktail for 15 days in the presence of 0–10

concentrations in postinduction cells, whereas apoptosis was increased by treatm
adipocyte marker protein expression in 3T3-L1 preadipo-

cytes in the presence of 10 AM RA was higher than that in

the presence of 10 AM PRA. Moreover, no differences in

PPARg2 and C/EBPa expressions were observed between

RA-treated and PRA-treated groups.

We further studied whether PRA regulated the expression

of other PPARg2 target genes such as aP2, whose products

are important in the binding and transport of RA and PRA in

adipose tissues. As shown in Fig. 5B, the expression pattern

of aP2 was similar to that of PPARg2, with the effect being

most pronounced after treatment with RA and PRA. On the

other hand, results of MTT assay showed that cell number

markedly increased with PRA treatment, compared to RA

treatment (Fig. 6), suggesting that, regardless of the medium

used preinduction and postinduction, treatment of 3T3-L1

cells with 10 AM RA, compared with PRA treatment,

resulted in a lower cell number, although cell numbers were
on (Days 0–15) 3T3-L1 cells. Adipogenesis was induced by treatment with

A and PRA at indicated concentrations for 15 days. Postinduction 3T3-L1

RA and PRA, respectively. PRA did not affect apoptosis with increasing

ent with 10 AM RA.
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not significantly different between RA and PRA up to 5 AM.

To confirm the results of cell viability, DAPI stainings of

3T3-L1 preadipocytes between RA and PRA, by concen-

trations, were also compared (Fig. 7). The results showed

that there was no significant difference in cell apoptosis rate

between 0 and 5 AM RA and PRA, whereas 10 AM RA

increased apoptosis compared to PRA treatment.
4. Discussion

Obesity is associated with a number of pathological

disorders, such as non-INS-dependent diabetes, hyperten-

sion, hyperlipidemia and cardiovascular diseases [3], and is

characterized by an increased adipose tissue mass that

results from increases in both hyperplasia and hypertrophy

[7]. Moreover, understanding of the balance between the

positive and negative regulators of adipogenesis has

important health-related implications for antiobesity medical

therapy [32]. Some drugs are used for the therapy of obese-

related metabolic diseases or in the discussion of the

possibility of preventing body fat accumulation. However,

the molecular basis for these associations remains to be

elucidated, thus rendering the search for antiobesity agents

inherently difficult. In this study, our interest was to

determine how RA, which is known to have favorable

effects on lipid homeostasis, affects lipid accumulation in

adipocytes. Here, we found that PRA also inhibits the

process of adipogenesis, including survival of adipocytes

and differentiation to mature adipocytes, and may be

developed to treat obesity.

Because RA is readily degraded upon exposure to light,

oxidants and heat [33], the stability of RA is one important

factor in drug formulation. Indeed, our study showed that

RA dissolved in methanol rapidly degraded during incuba-

tion at room temperature under light exposure, whereas the

rate of PRA degradation was very slow. On the other hand,

when the samples were protected from light, no decreases in

RA and PRA concentrations were observed (data not

shown), suggesting that the rapid degradation of RA under

our experimental settings was mainly caused by photolysis

and that the conjugation of RA to PEG may be an effective

means to protect RA from light. Generally, PEGylation

increases the stability and safety of drugs [34]. In addition,

PEGylated drugs are commercially available due to their

amphiphilic nature and solubility in water and gained

attention as enhancers of the absorption and bioavailability

of certain drugs [34,35].

Many studies on adipose cell lines, including 3T3-L1,

revealed that growth-arrested cells undergo at least one

round of DNA replication and cell doubling before

subsequent differentiation [36,37]. In our study, results of

FACS analysis showed that RA-induced apoptosis with

increasing concentrations in 3T3-L1 preadipocytes could be

attributed to its effect on hyperplasia. In addition, the

response of preinduction cells to RA treatment could be

explained by a block at the G0/G1 phase, as judged by the
appearance of a sub-G1 peak during cell cycle progression,

thereby reducing cell growth and inhibition of DNA

synthesis. Support for these results comes from in vitro

studies, demonstrating that a high concentration of RA

induces apoptosis in preadipocytes [19].

Moreover, Suryawan and Hu [8] demonstrated that 25 AM
RA achieved maximal inhibition of adipocyte differentia-

tion. However, to avoid toxicity effect at N25 AM RA, they

used 10 AM RA in subsequent experiments. On the contrary,

PRA reduced apoptosis in 3T3-L1 cells compared to RA

itself. Although the excellent stabilization of PRA in cell

apoptosis needs to be further elucidated, one explanation for

the observed stabilization may be that PEGylation provides

stability and reduces cytotoxicity. Generally, when PEGy-

lated drugs are compared to nonmodified drugs, PEGylation

provides higher solubility in water and lower cytotoxicity to

drugs [38]. In addition, PEGylation has been shown to be

nontoxic and has been approved for use in humans [31].

Consequently, the nontoxic and nonimmunogenic properties

of PEGylated drugs have been applied to reduce immuno-

genicity and to prolong circulation time in the blood

[31,38,39]. Our results are in agreement with early studies

indicating that PEGylation increases stability and reduces

cytotoxicity in preinduction adipocytes.

Differentiation of adipocytes occurs in response to a

variety of stimuli, including dietary constituents, drugs and

nuclear hormone receptors [40]. In addition, INS is known

to regulate adipocyte differentiation and lipid accumulation

[41]. In our study, adipocyte precursor cells placed on

cocktails such as INS, Dex and IBMX were able to undergo

full maturation into adipocytes. It also expressed major

adipocyte marker proteins such as PPARg2, C/EBPa and

aP2. The adipocyte differentiation program is regulated by

the sequential expression of transcriptional activators,

mainly PPAR families [42]. Especially, PPARg2 is found

almost exclusively in adipose tissues and has been linked to

adipocyte differentiation [43]. Moreover, the g subtype of

PPAR is expressed at a high level in adipose tissues of mice,

and its expression rapidly and dramatically increased during

the differentiation of 3T3-L1 preadipocytes [44]. Further-

more, a combined expression of PPARg and C/EBPa has

synergistic effects on the promotion of fat cell conversion in

myoblasts [45], showing that these genes are very important

for adipocyte fat accumulation. By contrast, 5–10 AM RA

significantly dedifferentiated adipocytes, as was similarly

observed in PRA-inhibited lipid accumulation and differen-

tiation in a dose-dependent and time-dependent manner.

These results indicate that not only RA but also PRA has

antioxidative action, thereby explaining the inhibition of

3T3-L1 cell differentiation, as similarly observed in RA-

inhibited pig adipocyte differentiation [8] and RA inhibition

of sheep adipocyte differentiation in primary culture [46]. In

addition, these results indicate that the negative effect of

PRA on adipogenesis was accompanied by the reduction of

PPARg2 protein in 3T3-L1 cells, which was accompanied

by the attenuation of C/EBPa expression. Because PPARg
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is a key transcription factor in the induction of adipogenesis

and lipid accumulation, PRA-induced down-regulation of

PPARg expression is likely to function similarly to the

observed effects of RA on transcriptional metabolism.

Similar results were observed by Schwarz et al. [47], who

reported that RA does not prevent C/EBPh induction but

blocks the induction of PPARg and C/EBPa, thereby

reducing adipogenesis. In addition, it has been already

reported that the inhibitory actions of adipocyte differenti-

ation by RA are exhibited through RAR up-regulation and

PPARg2 suppression [48]. Based on these results, the ability

of PRA to block PPARg-induced adipocyte differentiation—

in addition to its ability to block the transcriptional activity

of C/EBPa — is expected to ligand endogenous RAR

interfering with the function of PPARg. In fact, retinoids

regulate cellular functions by binding to intracellular RAR

or RXR, and RA selectively binds to RAR, leading to

the formation of an RAR–RXR heterodimer [8]. In

addition, the nature of the cross-talk of RA actions between

RARs, RXRs and PPARs via coactivators in adipose tis-

sues will likely prove to be important for the process of

adipogenesis [42]. Our data, together with these results,

suggest that the inhibitory action of adipocyte differentiation

by RA and PRA is exhibited through RAR up-regulation,

and the suppression of PPARg2 and PRA-induced

antiadipogenic effect in 3T3-L1 cells could be attribut-

ed to its effect on adipose hypertrophy, which was ac-

companied by a strong inhibition of PPARg2-induced

transcriptional activity.

The predictive value of in vitro cytotoxicity test is based

on the concept that toxic chemicals affect the basic functions

of cells. Such functions are common to all cells; hence,

toxicity can be measured by assessing cellular damages

[49]. Interestingly, our results indicate a sensitivity differ-

ence between RA and PRA treatments. Our results showed

that PRA-induced dedifferentiation effect in 3T3-L1 cells

could be attributed to its effect on adipose hypertrophy, but

not on hyperplasia. In addition, regardless of the medium

used preinduction and postinduction, PRA treatment of

3T3-L1 preadipocytes resulted in a cell number higher than

that in RA treatment, although cell numbers were not

significantly different in preinduction and postinduction

3T3-L1 preadipocytes between 1 and 5 AM RA and PRA.

The excellent stabilization of PRA in preinduction and

postinduction adipocytes, although needing to be further

elucidated, may be due to the stability and reduced

cytotoxicity provided by PEGylation, as supported by in

vitro and in vivo studies demonstrating that PEGylation

provides better cell viability, decreases cytotoxicity [50],

improves stability and reduces toxicity of drugs [34]. These

results suggest that, regardless of the medium used

preinduction and postinduction, PRA is a stable and

valuable drug in that it has good stability and it reduces

cytotoxicity by PEGylation.

In conclusion, we coupled PEG to RA to provide

stability and to decrease cytotoxicity. PRA inhibition of
adipogenesis was also examined to explore the molecular

events that occur during the adipogenic differentiation

process. We demonstrated that PRA inhibits the differenti-

ation of 3T3-L1 preadipocytes and that the expression of

major adipocyte marker proteins such as PPARg2, C/EBPa

and aP2 is also down-regulated by PRA in a time-dependent

and dose-dependent manner. Apoptosis, in addition, in-

creased as the concentration of RA increased, whereas PRA

reduced apoptosis with increasing concentrations. Based on

these results, PRA is more suitable and valuable as a drug in

that it has good stability and it reduces cytotoxicity through

PEGylation, although RA is also effective in the differen-

tiation of adipocytes. Hence, PRA may prove to be a stable

pharmaceutical drug for controlling the deposition of fats in

the human body.
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